See the "ideal" cube crystal NaCl – the crystal with size more then 1 cm – It's a very hard work to prepare such crystal – a great deal of knowledge together with effort to controll process during the crystallization to obtain the pretty crystal NaCl

To inhibit the growth of other crystals at the expense of the growth of a single crystal – certainly, the physical laws of crystallization apply not only to large crystals, but also everywhere else in a saturated NaCl water solution – the result is a diverse cluster of cubic crystals, but often in ugly shapes. If we want to make a so-beautiful crystal of NaCl, then we must to use the rope for the best choosen crystal. But without the rope?!

And what about silicon monocrystals, or silicon oxides, or iron or other elements or molecules? There is no activity in the world that is more difficult, more careful, and more CONTROLLED and REGULATED than to grow monocrystals. As the number of crystallized molecules increases, so does the number of defects—deviations from the row, etc. Similarly, if you examine a so-called ideal monocrystal, you will find that it is full of defects—dislocations. A completely ideal crystal cannot be produced in the world.

There have to be suitable conditions – not regardless conditions but "living" resp. controlled conditions to obtain a crystal NaCl from NaCl solution in everywhere in the universe or to obtain the primula from the primula germ cell everywhere in the universe and all other species or minerals, or solutions, or compounds, briefly all materials with suitable properties